
Supplemental Material for the Manuscript
Aberration-Aware Depth-from-Focus

Xinge Yang, Student Member, IEEE, and Qiang Fu, and Mohamed Elhoseiny, Member, IEEE,
and Wolfgang Hiedrich, Fellow, IEEE

Abstract—Computer vision methods for depth estimation usually use simple camera models with idealized optics. For modern
machine learning approaches, this creates an issue when attempting to train deep networks with simulated data, especially for
focus-sensitive tasks like Depth-from-Focus. In this work, we investigate the domain gap caused by off-axis aberrations that will affect
the decision of the best-focused frame in a focal stack. We then explore bridging this domain gap through aberration-aware training
(AAT). Our approach involves a lightweight network that models lens aberrations at different positions and focus distances, which is
then integrated into the conventional network training pipeline. We evaluate the generality of network models on both synthetic and
real-world data. The experimental results demonstrate that the proposed AAT scheme can improve depth estimation accuracy without
fine-tuning the model for different datasets. The code and models will be made publicly available.

Index Terms—Depth from Focus, Optical Aberration, Ray Tracing, Point Spread Function

✦

1 DATASET

1.1 Image Dataset

Our experiments involve two types of focal stacks: simu-
lated focal stacks generated using RGBD images and real-
world captured focal stacks. Simulated focal stacks comprise
both synthetic scenes and real-world scenes, while real-
world captured focal stacks consist of both outdoor scenes
and indoor scenes. To facilitate aberration-aware training,
we require access to lens data, focus distances, focal stacks,
and depth maps. Unfortunately, no such dataset is currently
available, so we created our own training data based on
simulated focal stacks, which allowed us to leverage known
lens models and select appropriate focus distances. For
testing, we used both simulated focal stacks and real-world
captured focal stacks.

To generate simulated focal stacks using RGBD data, we
select the FlyingThings3D [1], [2], Middlebury2014 [3], and
Matterport3D [4] datasets, which provide RGBD images.
To simulate the focal stacks, we use the normalized pixel
coordinates, focus distance, and depth map to calculate
the point spread function (PSF) for each pixel, and then
perform a convolution to generate focused images. The
focus distances are chosen linearly within the minimum and
maximum depth range of each image to mimic the focal
swapping process. In addition to regular data augmentation
techniques, such as random flips and color jittering, we
also introduce a random perturbation to each focus distance
to enhance the variety of our simulated focal stacks. An
example of our simulated focal stacks can be seen in Fig. 1.

• W. Heidrich is with the Department of Computer Science and Electrical
and Computer Engineering, King Abdullah University of Science and
Technology, Saudi Arabia, 23955.
E-mail: wolfgang.heidrich@kaust.edu.sa

• X. Yang, Q. Fu, M. Elhoseiny is with King Abdullah University of Science
and Technology.

To capture our real-world captured focal stacks, we posi-
tion the camera and focus it on different objects while mea-
suring the distance from the focused objects to the camera
(for the indoor scene), or reading the focus distances from
the EXIF metadata of the photos (for the outdoor scenes).
Our real-world focal stacks comprise 24 outdoor scenes and
1 indoor scene. Fig. 2 depicts the experimental setup for the
indoor scene. We use the LiDAR sensor on an iPhone 14 pro
to scan the 3D scene and load the scanned data into Blender
software. We then adjust the camera position and view angle
to align with the focused images. Once aligned, we render
the depth map with Blender and use it as the ground truth
for quantitative evaluation. Due to the breathing effect, the
focused images are not well-aligned. We load them into
Photoshop, align them, and then output the aligned focal
stack.

The resolution ratio of training and testing images is
determined by the camera sensor resolution, and any re-
sizing operation can alter the aberration property of the
lens. However, downsampling is feasible due to the physical
properties of the PSF. Although optical aberrations are more
pronounced at higher image resolutions, network train-
ing processes cannot handle the extremely high-resolution
images produced by commercial cameras with megapixel
sensors. Therefore, we find a balance between performance
and memory consumption that allows us to observe aberra-
tions in the image without using excessive memory during
network training. In our experiments, we used two different
image resolutions: 480 × 640 for the 50mm F/2.8 lens and
640 × 960 for the Canon RF 50mm F/1.8 lens. As shown in
Fig.3 (main paper) and Fig. 4, the off-axis aberrations can be
easily seen at the resolutions we use.

1.2 Lens Data

Our experiments involved two lenses: the 50mm F/2.8 lens,
generated using lensnet.com [5], and the Canon RF 50mm

http://lensnet.herokuapp.com/

(a) All-in-focus RGB image (b) Ground-truth depth map

(c) Focused image example 1 (d) Focused image example 2

Fig. 1. Simulated focal stacks with RGBD images.

(a) Experimental setup (b) Focused image example

(c) LiDAR scan result (d) Rendered depth map

Fig. 2. Real-world indoor scene. (a) We set up an indoor scene with objects placed at different positions. (b) We focus the camera on different
objects and capture focal stacks. (c) We use the LiDAR sensor on iPhone 14 pro/iPad pro to scan the 3D scene and load the scanned data into
Blender. We adjust the camera position and view angle to align with the focused image. (d) We render the depth map with Blender and use it as the
ground truth for quantitative evaluation.

TABLE 1
Lens data for the 50mm F/2.8 lens used in the paper. The lens is generated by [5].

Surface Radius [mm] Thickness [mm] Material (n/V) Semi-diameter [mm] Conic α4 α6 α8 α10 α12

1 (Sphere) 25.445 5.120 1.7290/54.494 15.00 0 0 0 0 0 0
2 (Sphere) 90.909 0.847 15.00 0 0 0 0 0 0
3 (Sphere) 22.124 2.937 1.6517/58.5020 12.50 0 0 0 0 0 0
4 (Sphere) 40.000 1.731 12.50 0 0 0 0 0 0
5 (Sphere) 204.082 1.782 1.6990/30.1789 12.50 0 0 0 0 0 0
6 (Sphere) 16.556 5.183 10.00 0 0 0 0 0 0
7 (Aper) 1.414 9.00 0 0 0 0 0 0
8 (Sphere) -36.101 6.749 1.6204/60.3100 10.00 0 0 0 0 0 0
9 (Sphere) -31.546 0.127 12.50 0 0 0 0 0 0
10 (Sphere) 44.643 7.151 1.7551/52.2945 15.00 0 0 0 0 0 0
11 (Sphere) 769.231 29.792 15.00 0 0 0 0 0 0
Sensor 21.63

TABLE 2
Lens data for the Canon RF 50mm F/1.8 lens used in the paper.

Surface Radius [mm] Thickness [mm] Material (n/V) Semi-diameter [mm] Conic α4 α6 α8 α10 α12

1 (Sphere) 28.621 4.20 N-LASF41 15.00 0 0 0 0 0 0
2 (Sphere) 68.136 0.18 14.24 0 0 0 0 0 0
3 (Sphere) 17.772 6.70 N-LASF43 12.45 0 0 0 0 0 0
4 (Sphere) 59.525 1.10 SF6 10.89 0 0 0 0 0 0
5 (Sphere) 11.427 5.27 8.89 0 0 0 0 0 0
6 (Aper) 6.20 7.50 0 0 0 0 0 0
7 (Sphere) -16.726 0.90 SF5 7.48 0 0 0 0 0 0
8 (Sphere) -29.829 0.83 7.73 0 0 0 0 0 0
9 (ASphere) -25.000 2.95 K5G20 7.76 0 -4.1203e-5 -2.9002e-7 -4.6712e-9 7.9065e-11 -9.2847e-13
10 (ASphere) -18.373 0.98 9.07 0 -2.4162e-5 -3.2915e-7 1.9110e-10 -9.2859e-13 -2.2919e-13
11 (Sphere) 280.004 4.60 N-LAK10 12.22 0 0 0 0 0 0
12 (Sphere) -34.002 25.67 12.86 0 0 0 0 0 0
Sensor 21.63

Fig. 3. Lens setup. Left: a 50mm F/2.8 lens from lensnet.com [5]. Right: the Canon RF 50mm F/1.8 lens.

F/1.8 lens, a commercially available lens. The lens data for
both lenses is presented in Table. 1 and Table.2, respectively.
The 2D lens structures with ray paths are displayed in Fig. 3.
Notably, the 50mm F/2.8 lens exhibits poorly corrected
optical aberrations, thus the performance improvement with
the AAT scheme is more obvious compared to the Canon
lens which has well-corrected optical aberrations.

2 PSF NETWORK TRAINING AND EVALUATION

In order to effectively train the PSF network, we needed to
sample a sufficient amount of input data to account for the
complex optical properties, particularly since the PSF varies

significantly with the object position and focus distance.
When the focus distance is short, even small changes in dis-
tance can produce large variations in the PSF. Additionally,
for depths close to the focus distance, the PSF undergoes
rapid changes, requiring the sampling of numerous depths
in the vicinity of the focus distance.

In our experiments, we utilize the principle of impor-
tance sampling to optimize the sampling strategy. Specifi-
cally, we sample more focus distances from the near range
and more depths in the vicinity of the focus distance. For
the sampling of normalized off-axis x and y coordinates, we
use a uniform distribution.

http://lensnet.herokuapp.com/

R
ay

-tr
ac

in
g

N
et

w
or

k
G

au
ss

ia
n

PS
F

𝑓! = 1.5𝑚: 𝑑 = 1.2𝑚

0°

0°

0°

16.6°

16.6°

16.6°

23.5°

23.5°

23.5°

𝑑 = 1.5𝑚

0°

0°

0°

16.6°

16.6°

16.6°

23.5°

23.5°

23.5°

𝑑 = 2𝑚

0°

0°

0°

16.6°

16.6°

16.6°

23.5°

23.5°

23.5°

Fig. 4. The PSF evaluation results for the 50mm F/2.8 lens. We focus the lens to a distance of 1.5m and evaluate the PSF of the three methods
at three depths and three view angles. Our proposed PSF network produces a PSF that is similar to the ground truth (ray tracing). In contrast, the
Gaussian PSF exhibits significant differences, particularly at large view angles. The PSF of a real lens varies with different view angles due to the
presence of off-axis optical aberrations, while the Gaussian PSF model neglects this aberration.

For each training iteration, we generate 256 input data
with different object positions but the same focus distance.
We use the same focus distance within each iteration be-
cause changing the focus distance requires adjusting the
sensor position of the lens model. However, for different
iterations, we use different focus distances. We train the PSF
network for 100,000 iterations, which we deem sufficient to
cover most situations. Once trained, we freeze the param-
eters and use the PSF network in subsequent depth-from-
focus training to generate photorealistic images.

There are other methods for representing the PSF using
neural networks. For example, Tseng et al. [6] propose an
architecture with an MLP encoder and a CNN decoder
to estimate the PSF grid at given depths. We modify the
input to exclude the optics parameters and include focus
distance parameters, and train the network for comparison.
Our pure-MLP network outperforms the other network in
terms of PSF representation accuracy. Moreover, our PSF
network is better suited for the DfF problem, as different
image pixels have different depths, whereas the other PSF
network tends to estimate the PSF grid for an entire depth
plane. Thus, we can use our PSF network to simultaneously
estimate PSFs for points with different depths, while the
other network is harder to implement for this purpose.

3 DEPTH-FROM-FOCUS NETWORK TRAINING AND
EVALUATION

3.1 Local PSF Convolution

Existing methods usually use the same PSF kernel for con-
volving the entire image. However, in our experiments, we
use different PSF kernels for each pixel. This local convo-
lution operation does not have a specific function, thus we
provide our implementation in PyTorch, as follows:

def local_psf_render(input, psf, kernel_size=11):
""" Blurs image with dynamic Gaussian blur.

Args:
input (Tensor): The image to be blurred (N, C, H

, W).

psf (Tensor): Per pixel local PSFs (1, H, W, ks,
ks)

kernel_size (int): Size of the PSFs. Defaults to
11.

Returns:
output (Tensor): Rendered image (N, C, H, W)

"""

if len(input.shape) < 4:
input = input.unsqueeze(0)

b,c,h,w = input.shape
pad = int((kernel_size-1)/2)

1. pad the input with replicated values
inp_pad = torch.nn.functional.pad(input, pad=(pad,

pad,pad,pad), mode=’replicate’)
2. Create a Tensor of varying Gaussian Kernel
kernels = psf.reshape(-1, kernel_size, kernel_size)
kernels_rgb = torch.stack(c*[kernels], 1)
3. Unfold input
inp_unf = torch.nn.functional.unfold(inp_pad, (

kernel_size,kernel_size))
4. Multiply kernel with unfolded
x1 = inp_unf.view(b,c,-1,h*w)
x2 = kernels_rgb.view(b, h*w, c, -1).permute(0, 2,

3, 1)
y = (x1*x2).sum(2)
5. Fold and return
return torch.nn.functional.fold(y,(h,w),(1,1))

For high-resolution images, we may encounter memory
issues. One solution is to perform local PSF convolution on
image patches, which can be implemented as follows:

def local_psf_render_high_res(input, psf, patch_size
=[320, 480], kernel_size=11):
B, C, H, W = input.shape
img_render = torch.zeros_like(input)
for pi in range(int(np.ceil(H/patch_size[0]))):

for pj in range(int(np.ceil(W/patch_size[1])
)):
low_i = pi * patch_size[0]
up_i = min((pi+1)*patch_size[0], H)
low_j = pj * patch_size[1]
up_j = min((pj+1)*patch_size[1], W)

img_patch = input[:, :, low_i:up_i,
low_j:up_j]

GT Ours (AiFNet) Baseline (AiFNet) Ours (DFVNet) Baseline (DFVNet)

Fig. 5. Qualitative results on simulated focal stacks. With the AAT scheme, both network models predict more accurate and finer depth maps, while
the non-AAT models fail to distinguish between adjacent objects and also mispredict the depth of some edge objects.

psf_patch = psf[:, low_i:up_i, low_j:
up_j, :, :]

img_render[:, :, low_i:up_i, low_j:up_j]
= local_psf_render(img_patch,

psf_patch, kernel_size=kernel_size)

return img_render

3.2 DfF Training and Evaluation

Simulating focal stacks from RGBD datasets allows us to
use desired lens models and flexible focus distances. During
the depth-from-focus (DfF) training, we follow the original
training procedure and hyperparameter settings as reported
in the original papers for the AiFNet [2] and the DFVNet [7].
We find that stacking the focused images in order of focus
distance leads to better training results than stacking them
randomly. Therefore, we form both training and testing focal
stacks following this principle.

For the experiments on simulated focal stacks, we eval-
uate the generalizability of the models by training them
with focal stacks generated on synthetic RGBD images
and testing them with focal stacks generated on real-world
RGBD images. There is a significant domain gap between
semantic information of the training and testing datasets.
However, the experimental results show that the domain
gap can be bridged effectively using our proposed AAT
scheme. Additional evaluation results are presented in Fig.5.

It is worth noting that our results are not contradictory to
those in the original papers [2], [7], as the training and test-
ing datasets used in those papers were also simulated with
the same lenses (thin lens model of the same focal length
and aperture), which is consistent with the conclusion we
are making.

REFERENCES

[1] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks for
disparity, optical flow, and scene flow estimation,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2016, pp. 4040–4048. 1

[2] N.-H. Wang, R. Wang, Y.-L. Liu, Y.-H. Huang, Y.-L. Chang, C.-P.
Chen, and K. Jou, “Bridging unsupervised and supervised depth
from focus via all-in-focus supervision,” in Int. Conf. Comput. Vis.,
2021, pp. 12 621–12 631. 1, 5

[3] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić,
X. Wang, and P. Westling, “High-resolution stereo datasets with
subpixel-accurate ground truth,” in German conference on pattern
recognition. Springer, 2014, pp. 31–42. 1

[4] Y. Zhang and T. Funkhouser, “Deep depth completion of a single
RGB-D image,” in IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp.
175–185. 1

[5] G. Côté, J.-F. Lalonde, and S. Thibault, “Deep learning-enabled
framework for automatic lens design starting point generation,”
Opt. Express, vol. 29, no. 3, pp. 3841–3854, 2021. 1, 3

[6] E. Tseng, A. Mosleh, F. Mannan, K. St-Arnaud, A. Sharma, Y. Peng,
A. Braun, D. Nowrouzezahrai, J.-F. Lalonde, and F. Heide, “Differ-
entiable compound optics and processing pipeline optimization for
end-to-end camera design,” ACM Trans. Graph., vol. 40, no. 2, pp.
1–19, 2021. 4

[7] F. Yang, X. Huang, and Z. Zhou, “Deep depth from focus with
differential focus volume,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2022, pp. 12 642–12 651. 5

