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ABSTRACT

In computer vision, it has long been taken for granted that high-quality images obtained through
well-designed camera lenses would lead to superior results. However, we find that this perception is
not a “one-size-fits-all” solution and task-driven deep-learned simple optics can actually deliver better
performance for computer vision applications. The task-driven lens design idea, which relies solely
on a well-trained network model for supervision, is proven to be capable of designing lenses from
scratch. The deep-learned lens characteristics are defined by high-level computer vision applications
rather than conventional optical objectives. Experimental results on image classification demonstrate
the task-driven lens (“TaskLens”) exhibits higher accuracy than classical imaging-driven lenses,
with even fewer elements. Furthermore, we show that our TaskLens is compatible with various
network models while maintaining enhanced classification accuracy. We believe this task-driven idea
holds significant potential for the next generation of optical design, particularly when the physical
dimensions and cost of lenses are severely constrained.

1 Introduction

Modern deep networks have exhibited exceptional performance in various computer vision tasks, including image
classification [1, 2, 3, 4], object detection [5, 6], semantic segmentation [7, 8], and depth estimation [9, 10, 11]. To
fully exploit the feature extraction capabilities of deep networks, these works typically rely on sharp, high-quality
input images, which are often captured using well-designed precise lenses. However, such lenses can be prohibitively
expensive and complex. For example, modern cellphone lenses usually have over five highly aspheric elements [12, 13]
and commercial camera lenses usually have six or more precise optical elements [14, 15].

End-to-End lens design [16, 17, 18, 19], an emerging field, simultaneously optimizes camera lenses and deep networks
to maximize performance for specific applications. This approach has shown promising results in computational
imaging areas such as extended-depth-of-field imaging [19, 17, 20, 21, 22], large-field-of-view imaging [23, 19, 20],
hyperspectral imaging [24, 25, 26, 27], high-dynamic-range imaging [28, 29], as well as computer vision tasks such as
object detection [30, 18] and depth estimation [31, 32].

However, current End-to-End lens design methods predominantly depend on either pre-corrected lenses as starting
points [19, 17, 30] or human expertise as a design prior [33, 18] to find a final solution. As a result, the lenses designed
are usually refined versions of conventional imaging lenses, which may not be the optimal solution because classical
lens design has usually reached a local minimum. In other words, current End-to-End lens design cannot function
without classical lens design, which not only reduces usability but also prevents deep learning methods from discovering
novel lens structures for specific computer vision tasks.
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To address this limitation, we propose a task-driven approach where a well-trained network model is adopted to
supervise the lens design from scratch. Unlike conventional End-to-End methods which typically begin with successful
lenses and simultaneously optimize both the lens and the network, our approach exclusively optimizes optical parameters
while maintaining a fixed downstream network model. This task-driven method simplifies the End-to-End design
challenge, facilitating the exploration of more complex optical structures. Additionally, it enhances the explainability of
the design process by learning an optical structure that effectively encodes valid features from the object space to the
image space.

In this paper, we focus on the image classification task and aim to find the corresponding optimal lens structure.
Employing the task-driven approach, we design three image classification lenses (“TaskLens”) from scratch solely
with network supervision. For comparison, three conventional imaging lenses (“ImagingLens”) for each TaskLens are
designed by experienced optical engineers. Image classification accuracy evaluation on ImageNet [34] demonstrates that
our TaskLenses outperform ImagingLenses with even fewer lens elements. By digging into the optical characteristics,
we find the TaskLens exhibits a novel long-tailed point spread function (PSF) which effectively preserves image features
in the presence of optical aberrations for image classification purposes. Although this PSF is not desired in conventional
imaging-driven lens design, it is beneficial for machine vision and high-level computer vision tasks. Additionally,
we demonstrate the practicality of our TaskLens by showing that it is compatible with various network models while
maintaining enhanced classification accuracy. The contributions of this paper can be summarized as follows:

• We propose a task-driven lens design method that relies only on a well-trained network model to design lenses
from scratch.

• Our TaskLenses achieve higher accuracy in image classification tasks, outperforming conventional imaging
lenses while utilizing fewer elements.

• We analyze the optical characteristics of TaskLens and demonstrate its compatibility with various network
models, highlighting its ability to maintain or enhance performance across different scenarios.

2 Related works

2.1 Classical lens design.

Classical lens design methods [35, 36, 37] aim to optimize lenses that fulfill specific imaging quality criteria. The lens
optimization process typically involves minimizing image quality-based losses, usually measured by the root-mean-
square (RMS) spot size. This refers to the RMS radius of all sampled optical rays within a certain field on the image
plane. Smaller RMS spot sizes contribute to enhanced image quality. Ray tracing and optimization algorithms are
widely explored in this context and have been extensively applied in optical design software such as Zemax [38] and
Code V [39].

2.2 End-to-End lens design.

End-to-End optical design [16, 17, 18, 19] jointly optimizes optical systems (including diffractive, refractive, and
reflective components) and downstream image processing networks to enhance the overall capabilities for a target
application. It has demonstrated remarkable performance in various applications, including hyperspectral imaging [24,
25, 26, 27], extended-depth-of-field imaging [17, 21, 22, 19], large-field-of-view imaging [23, 19], and seeing through
obstructions [40]. End-to-End optical design has also enabled the reduction of optical aberrations in compact structures,
such as large field of view [23, 19], and achromatic imaging [16, 25, 41]. Furthermore, it has exhibited improved
performance in computer vision tasks over classical lenses, including optical character recognition [42], object
detection [18, 30, 42], and depth estimation [31, 32]. However, End-to-End optical design presents challenges for
convergence, as both lens design and network optimization are highly non-convex problems. The optical gradients
back-propagated from the network are indirect and biased compared to classical lens design objectives (eg, spot size).
To address this challenge, researchers have adopted various strategies, including initiating designs from successful or
simple structures [17, 19, 18, 30, 42, 20, 23] or using curriculum learning approaches [21].

2.3 Differentiable image simulation.

In End-to-End optical design, a differentiable optical simulator is necessary to back-propagate the final image loss
through the entire pipeline and optimize optical parameters. Existing differentiable optical simulation methods rely
on either wave optics or geometric optics. In wave optics, diffractive optical elements (DOEs) [43, 44, 16, 25],
metasurfaces [45], and refractive lenses [29, 28, 41, 40, 46] are modeled as phase modulation functions. Refractive
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Figure 1: The task-driven lens design pipeline involves the computation of PSF through differentiable ray tracing,
followed by convolution with input images to simulate camera-captured images at different fields of view. Subsequently,
a well-trained network computes the image classification errors and back-propagates the loss function to optimize the
lens parameters. Different from classical lens design which efforts to minimize only the PSF, task-driven lens design
focuses on whether the camera-captured images can be successfully classified by the downstream deep network.

lenses are often simplified as thin lenses under the paraxial approximation, which can be inaccurate and fail to represent
real lenses. Recent studies in ray tracing-based image simulation [47, 17, 48, 19, 18, 33, 46] have shown promising
accuracy in modeling thick, aspherical lenses and even freeform optics. In this approach, images captured by cameras
are simulated using either ray tracing-based rendering or point spread function (PSF) convolution [18, 19, 42, 30].
To make the ray tracing process differentiable, researchers either employ auto-differentiation to compute optical
gradients [17, 19, 21, 42, 30] or use a network to represent the optical lens [33, 18, 49].

3 Methods

3.1 Task-driven lens design

Illustrated by Fig. 1, the lens design problem for a visual task can be formulated as follows:

θ = argmin
θ

∥f(gθ(x))− y∥

s.t. f = argmin
f

∥f(x)− y∥, (1)

where x represents the input object image, θ represents the lens parameters, g represents the imaging process, f
represents the target visual task, and y is the ground truth for the visual task f . The intuitive solution to Eq. (1) is given
by

θ = argmin
θ

∥gθ(x)− x∥, (2)

which minimizes the difference between camera-captured image gθ(x) and the object image x. This imaging-driven
classical lens design philosophy guides optical engineers to minimize the PSF of the lens system, corresponding to the
blue arrow in Fig. 1.

However, we propose that Eq. (2) represents only a local minimum for the target visual task, as the solution spaces for
the visual task and the best imaging quality are different. In particular, we assume that there are key features in the
object images for a visual task, and the object image can be decomposed as

x = xf ⊕ xbg, (3)

where xf represents the image features, and xbg represents the background information. They are combined with the
relation ⊕, but a well-trained network f can effectively extract xf from the input, and only xf contributes to the output,
formulated as f(x) = f(xf ). Based on this assumption, the optical lens only needs to capture/preserve the image
features xf from the object images:

θ = argmin
θ

∥gθ(xf )− xf∥. (4)

The philosophy of this task-driven design method is to convert the highly non-convex lens optimization problem into a
feature encoding problem. As a result, we can neglect the useless background information xbg and focus on interesting
optical features during lens design, rather than minimizing the total aberrations for an intermediate optimal imaging
performance as in classical lens design.

3



A PREPRINT - MARCH 19, 2024

Red ray

Spread out

Pixel 2

Pixel 3 Pixel 4

Ray distribution

Differentiable PSF

Pixel 1

Figure 2: Differentiable PSF computation. Each optical ray is assigned to its neighboring four pixels with a weight term
depending on the distance from the ray. The weight term tracks the gradient information and is used to optimize lens
parameters during the back-propagation process.

Corresponding to the red arrow in Fig. 1, xf is determined by a well-trained network f , which operates as a black
box to guide the task-driven lens design process. During the optimization, the objective is to generate images that
can be successfully classified by the network, without aiming for perfect imaging quality. It is important to note that
Eq. (1)–Eq. (4) are not intended to be strict mathematical proofs; instead, they are used to illustrate our task-driven
approach.

The task-driven lens design pipeline is similar to the End-to-End optical design pipeline, except that we use a well-
trained and intact network during the training. Upon the advantages of End-to-End optical methods, we propose
this task-driven lens design approach mainly based on two observations: (1) the visual capabilities of an End-to-End
optical system primarily stem from the optical aspects, and (2) achieving convergence in End-to-End optical design is
challenging due to the difficulty of obtaining accurate gradients from an undertrained deep network.

3.2 Differentiable point spread function

The PSF characterizes how an optical system blurs a point light source. In image simulation, PSF is convolved with the
object image to simulate the camera-captured image. PSF can be computed by ray tracing from a point source to the
sensor plane. Subsequently, the optical rays are assigned to their neighboring sensor pixels, as shown in Fig. 2. This
process can be formulated as

PSF(op) =

N∑
i=1

ui · σ(|(op − oi) · êx|/L) · σ(|(op − oi) · êy|/L), (5)

where op denotes the pixel coordinate, oi denotes the intersection position of the ith ray on the sensor plane, N
represents the numbers of rays from each point source, ui denotes the energy, which we assume equals to 1, êx and
êy are unit vector in the sensor plane, and L denotes the physical width of a sensor pixel. In our experiments, we set
ui = 1. The σ function is defined as

σ(x) =

{
1− x 0 ≤ x ≤ 1

0 otherwise
, (6)

which assesses a ray’s impact on its surrounding pixels. As shown in Fig. 2, the total energy of a ray is spread out
to its neighboring four pixels. Eq. (5) can be viewed as an inverse bilinear interpolation. By utilizing this sub-pixel
information, we can represent the actual light distribution using a limited number of rays. In the backward process, the
PSF gradients can guide the rays to move towards the desired pixels as Eq. (5) is differentiable. The gradients can then
be back-propagated to adjust the lens surfaces to control the rays.

3.3 Implementation details

In our experiments, we selected a 5×5 PSF grid to represent the optical characteristics of the lens. Instead of simulating
full sensor resolution images with this PSF grid, we used a single PSF from the grid to simulate independent images at
each field of view. We adopted this setting for two reasons: (1) Commercial camera sensors typically have mega-pixel
resolution, while training images usually have much lower resolutions (eg, 224×224), making it difficult to obtain full
sensor resolution training data; (2) We believe that the learned optical characteristics should be independent of the
content distribution of the training images. This approach differs from previous works such as Tseng et, al [18] and
Côté et al [30], which sacrifice edge imaging quality by assuming that objects will not be located there.
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Table 1: Accuracy (top) on the validation set of ImageNet achieved by different lenses. PSNR [dB] (middle) of
simulated camera captures are adopted to represent the imaging quality of the lens. Avg RMS spot size [µm] (bottom)
of the optical lens.

TaskLens ImagingLens #1 / #2 / #3

Doublet
70.08% 65.63% / 68.54% / 67.01%
19.46 22.43 / 23.65 / 22.90
27.27 13.61 / 9.85 / 10.99

Triplet
73.40% 70.04% / 69.92% / 68.52%
23.85 22.77 / 23.14 / 23.51
10.41 9.32 / 14.75 / 8.53

Quadruplet
73.61% 72.27% / 68.88% / 68.56%
23.67 25.00 / 23.63 / 23.98
9.97 7.32 / 10.11 / 11.37

We implement the differentiable PSF calculation using an open-source memory-efficient differentiable ray tracer
dO [19, 21]. The lens surfaces are aspheric, with optimizable parameters of curvature, position, and even polynomial
coefficients ranging from α4 to α10. Lens materials are chosen from the library of commonly used cellphone lens
plastics. The image sensor has a diagonal length of 4 mm and a resolution of 1080×1920, corresponding to a pixel size
of 1.8 µm. To accommodate lens dispersion, we use three wavelengths (656.3 nm, 589.3 nm, 486.1 nm) to calculate the
PSF of each channel. We utilize a 51×51 PSF kernel size to account for significant optical aberrations, also allowing
rays to move across a larger region. The AdamW optimizer [50] is employed with a learning rate of 1e−4 for curvature,
position, and α4 parameters, while a 0.02 learning rate decay is applied to higher-order polynomial coefficients. In
accordance with Yang et, al [21], we penalize the incident angles between light rays and lens surface distance to prevent
self-intersection during the lens design. Considering the rotational symmetry of the aspherical surfaces, we select
quarter space for training which corresponds to 9 distinct fields, and we sample 256 rays from each field of view to
compute the differentiable PSF.

All training images are resized to 224×224 and convolved with the PSF to simulate the captured images at that field
of view. During training, a batch size of 64 is employed, increasing to 576 after concatenating the image batches for
each of the 9 different fields of view. We use TrivialAugment Wide [51] for data augmentation to prevent the learned
lens from converging to a perfect imaging lens. For the task-driven lens design, we utilize a well-trained ResNet50
network [1] for supervision. The lens is optimized from scratch for 1 epoch on the ImageNet training set, typically
achieving convergence. Then we conduct End-to-End training to fine-tune the lens. The optimization process consumes
approximately 60 GB of GPU memory for a lens and the previous settings, with the bottleneck being the network size
and the number of rays.

After designing the lens, we fine-tune the image classification network for each lens using the AdamW optimizer [50]
with a learning rate of 1e−5 and the CosineAnnealing scheduler [52] with a warm-up scheme. We sample 4096 rays
from each field of view during the fine-tuning and testing stages to obtain more accurate PSF. This high sampling rate
does not cause memory issues because we do not need to perform differentiable ray tracing at this stage. We fine-tune
each network model for an additional 3 epochs, which runs on two 80G A100 GPUs for two days to complete. The
classification accuracy is computed on all simulated images at 9 fields of view. Since it would be too expensive if we
used the official ImageNet testing set, we split a partition of the training set for validation and use the validation set for
testing.

4 Task-driven image classification lens design

With our proposed task-driven approach, we design three image classification lenses from scratch, with two, three,
and four lens elements, respectively. Each lens is designed for a target FoV of 68.8◦, F/2.8, and paired with an image
sensor with a 4 mm diagonal length. We control the aperture to F/2.8 by setting the aperture radius to 0.52 mm. As
shown in Fig. 3, the task-driven approach successfully converges optical rays for valid imaging, even though we use a
classification network in place of traditional imaging-based objectives.

Baselines. For each image classification lens (“TaskLens”), we design three conventional imaging lenses (“Imag-
ingLens”) for comparison. The first ImagingLens (labeled as #1) is optimized using the open-source code [21] by
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Figure 3: The lens structure, PSF at different fields, and corresponding spot diagram for doublet (a), triplet (b), and
quadruplet (c) lenses. Although the total spot diagram of TaskLens is larger than ImagingLens, the majority of the
optical rays converge to a small region, resulting in a smaller effective spot diagram (marked by the black circle).
This novel spot diagram distribution results in a long-tailed PSF, characterized by a small concentrated center and
sparsely populated outer regions. In scenarios where the optical structure cannot fully correct all optical aberrations,
this long-tailed PSF proves effective in preserving essential image features from the object images.

minimizing the spot diagram at different fields of view. The other two ImagingLenses (labeled as #2 and #3) are
optimized by experienced (10+ years) optical engineers using ZEMAX [38].

Classification accuracy comparisons. Table 1 presents quantitative classification accuracy for all lenses. Our
TaskLens demonstrates superior image classification accuracy compared to ImagingLens with the same number of lens
elements. The classification accuracy improvement is significant. Due to optical aberrations, no lens can reach the upper
bound (75.63%) acquired with the original sharp images. Remarkably, our doublet TaskLens outperforms all triplet
ImagingLenses, and the triplet TaskLens outperforms all quadruplet ImagingLenses. These results demonstrate that
our TaskLens can achieve enhanced image classification accuracy with fewer lens elements compared to conventional
lenses.

Image quality comparisons. In Tab. 1, we also report the imaging performance, quantified by the PSNR metric
and average RMS spot size for each lens. Nine distinct fields are selected to calculate these quantitative scores. The
results indicate that high imaging quality or a smaller average RMS spot size does not always correlate with higher
image classification accuracy. This supports our task-driven design philosophy that a perfect classical optical lens is not
necessarily the optimal solution for high-level computational imaging and computer vision applications.

Explanation for the enhanced visual task performance. To investigate the reason behind the improvement in
classification accuracy, we evaluate the optical characteristics of the TaskLens and the best-performing ImagingLens.
We plot the PSF from the optical axis (0◦) to the full FoV, as well as the corresponding spot diagram at 589.3 nm in
Fig. 3. The spot diagram illustrates the intersection points of optical rays with the sensor plane. Due to insufficient
optical elements to correct all optical aberrations, the spot diagram exhibits noticeable aberrations. An interesting
phenomenon was observed: TaskLens converges the majority of optical rays into a small region, disregarding outlier rays.
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Figure 4: Image simulation results of the doublet TaskLens and ImagingLens (#2). Left: Full-resolution simulation
using a resolution chart, with zoomed image patches. For ImagingLens, the center region of the simulated camera
capture exhibits well-corrected aberration, while the off-axis regions suffer from significant aberrations. For TaskLens,
all regions display a noticeable “haze” pattern caused by the long-tail PSF; however, the structural details are well
preserved. Right: Single field image simulation with one PSF function. The simulated camera captures of TaskLens
can be correctly recognized by the network despite the haze effect, but those of the ImagingLens fail due to optical
aberrations.

In contrast, ImagingLens attempts to converge all optical rays towards the center, aligning with conventional optical
design objectives. Although the total spot size of the TaskLens is often larger compared to that of the ImagingLens, the
TaskLens demonstrates a smaller effective spot size, as indicated by black dashed circles in Fig. 3.

This novel spot diagram results in a distinctive long-tailed PSF at each field of view, particularly for the triplet and
quadruplet TaskLenses. Since most light energy effectively converges in the center region, structural details in the
object images are well preserved, despite causing a haze effect in simulated camera captures, as illustrated in Fig. 4.
Although the haze effect is detrimental to human vision and image quality metrics, it can be compensated for by the
network. The network successfully recognizes the sea lion in the inputs from the TaskLens (Fig. 4). During the training
process, the optics learn to encode valid image features recognizable by downstream network models. In contrast,
the ImagingLens design process, unaware of backend tasks, leads to optical aberrations that blend information in the
object image, resulting in blurry camera captures unrecognizable by the network (Fig. 4). These visualization results
suggest that, when optical structures are insufficient to correct all aberrations, it is beneficial to selectively tolerate
certain aberrations, such as the haze effect in our experiments, to achieve better final visual performance.

5 Ablation study

To demonstrate the effectiveness and usability of our proposed task-driven lens design and the corresponding TaskLens,
we conduct ablation experiments with various downstream network models, comparisons with conventional End-to-End
lens designs, and evaluations of performance both with and without image post-processing.

5.1 Can TaskLens work with different classification models?

In the Task-Driven lens design process, the lens is designed with a specific network model (ResNet-50). However, in
real-world scenarios, it is common to change downstream network models based on practical constraints. For example,
using smaller models to accommodate the limited computational power of end devices or employing larger models to
achieve better performance. However, optical lenses cannot be modified after design and manufacturing. Therefore, we
aim to investigate whether the visual task performance of TaskLenses is compatible with different network models.

We employ three network models with different model sizes and architectures: MobileNetV3-Large [53] (“MobileNetV3-
L”) with 5.5M parameters, SwinTransformer-Base [2] (“Swin-B”) with 88M parameters, and ViT-Large-patch/16 [54]
(“ViT-L/16”) with 304M parameters. Additionally, the original ResNet50 network contains 26M parameters. ResNet50
and MobileNetV3-L are convolution neural networks, while Swin-B and ViT-L/16 are transformer-based architectures.
Table 2 presents the image classification accuracy for different models and our TaskLens still holds the highest accuracy

7
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Table 2: Classification accuracy with different network models. Our designed TaskLens is compatible with different
network models while maintaining enhanced performance. The results for the original ResNet50 are reported in Tab. 1.
Acc Ref: accuracy achieved on original sharp images.

MobileNetV3-L [55] Swin-B [2] ViT-L/16 [54]
#params / Acc Ref 5.4M / 73.96% 88M / 85.59% 304M / 86.70%

TaskLens (Doublet) 68.22% 81.19% 81.76%
ImagingLens #1 / #2 / #3 64.60% / 67.73% / 66.05% 79.03% / 80.87% / 80.23% 79.39% / 81.19% / 80.79%
TaskLens (Triplet) 71.82% 82.65% 83.46%
ImagingLens #1 / #2 / #3 68.36% / 67.94% / 68.01% 81.19% / 81.08% / 80.19% 81.62% / 81.46% / 81.61%

TaskLens (Quadruplet) 72.06% 82.82% 83.62%
ImagingLens #1 / #2 / #3 71.00% / 66.78% / 67.19% 82.43% / 80.75% / 80.46% 82.52% / 81.60% / 81.50%

Table 3: End-to-End design from scratch fails to converge. While starting with a well-designed ImagingLens, End-to-
End design fails to discover the optimal classification lens.

TaskLens End2End Training

ImagingLens From scratch

Doublet 70.05% 69.55% ✗

Triplet 73.40% 71.94% ✗

Quadruplet 73.61% 73.44% ✗

at the same number of lens elements. The results demonstrate that our TaskLens is compatible with different network
models while maintaining enhanced performance, which also implies that the visual task performance of TaskLens
comes from its novel optical characteristics.

Moreover, these results provide inspiration for addressing the memory constraints in Task-Driven lens design by
utilizing smaller network models for training. And people can switch to larger models in practice after designing the
lens.

5.2 Can End-to-End training find the optimal lens?

In this section, we aim to investigate whether the conventional End-to-End optical design approach can also identify the
optimal lens for image classification. We consider two initial lens starting points: the best-performing ImagingLens and
an all-flat lens. These lenses, along with a well-trained classification network (ResNet50), are jointly optimized using
the image classification loss, as is typical in conventional End-to-End optical design approaches. The final classification
results are presented in Tab. 3.

When starting from the all-flat optics, the End-to-End training fails to converge. This is primarily attributed to the
inherent challenges in achieving convergence directly from scratch when employing differentiable ray tracing-based
imaging models. When initiating with a well-designed imaging lens and network, the final performance of the lens
designed through this process does not match that of our TaskLens. We hypothesize that this is because the imaging
lens starting point has already reached a local minimum for the visual task. As a result, the gradients back-propagated
to the lens parameters are too weak to escape from this local minimum. Consequently, the lens designed through
the End-to-End process merely fine-tunes the initial configuration (detailed lens structure in Supplemental Material),
leading to a classification performance that is inferior compared to our TaskLens.

5.3 Can image restoration bridge the performance gap?

Image restoration is commonly employed to mitigate optical aberrations present in camera captures. These algorithms,
especially deep learning-based methods, have exhibited remarkable capabilities in recovering fine structures within
images, subsequently enhancing the performance of downstream visual tasks. Given the higher level of optical
aberrations in our TaskLens compared to conventional ImagingLens, we want to investigate whether the visual task
performance gap between TaskLens and ImagingLens can be bridged through image restoration. Consequently, we
apply image restoration to all lenses and compare the resulting classification accuracy of the restored images.

8
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Table 4: Classification accuracy after image restoration. The performance gap between TaskLens and ImagingLens can
not be bridged by image restoration.

PSNR [dB] Classification Acc

TaskLens (Doublet) 27.24 72.03%
ImagingLens 27.54 / 30.30 / 30.87 68.19% / 71.24% / 71.08%

TaskLens (Triplet) 32.31 74.43%
ImagingLens 29.44 / 30.47 / 29.95 72.42% / 73.35% / 70.90%

TaskLens (Quadruplet) 33.58 74.61%
ImagingLens 34.29 / 29.69 / 29.38 73.98% / 72.16% / 71.52%

We employ NAFNet [56] (width = 32, encoding block number = [1, 1, 1, 8], middle block number = 1, and decoding
block number = [1, 1, 1, 1]) to recover the camera captures for each lens. We first train the restoration network on
camera-captured images to convergence, then fix the restoration network and fine-tune the image classification network
using restored images.

Table 4 presents the image restoration and classification results. The image restoration demonstrates an enhancement in
classification accuracy for all lenses. However, TaskLens still outperforms ImagingLens with the same number of lens
elements. These results suggest that the gap in classification performance cannot be solely bridged by applying image
restoration.

6 Discussion

Application scenarios. In practice, although it is possible to purchase high-quality off-the-shelf lenses, there are
instances where desired optical specifications such as focal length and FoV are not readily available. Therefore, there
is a need to customize lenses which entails domain-specific expertise, sophisticated manufacturing processes, high
costs, and significant leading time. With the advance of automatic lens design techniques [21, 57, 33] and 3D printing
technology [58, 59], it has become increasingly possible to customize versatile lenses with significantly less effort. By
leveraging our proposed task-driven lens design approach, we can further simplify the optical structure and reduce the
number of lens elements. This reduction in complexity offers the additional benefit of minimizing the effort required in
lens customization.

Manufacturing. Currently, we are unable to manufacture the designed lenses to validate our results with real-world
experiments. However, the ray tracing accuracy of our simulation aligns with the commercial optical design software
ZEMAX, which is commonly regarded as the industrial standard. Additionally, we believe the task-driven lens design
approach enhances the classical lens design methodology, despite not having the manufacturing process. In the
Supplemental Material, we have evaluated the accuracy of our image simulation using off-the-shelf optical lenses.
Common manufacturing and assembly errors, which typically reduce imaging and visual performance in real-world
scenarios, are also addressed and analyzed by simulation in the Supplemental Material.

Open questions. In our experiments, we observe a novel long-tail PSF that effectively preserves object structures
despite optical aberrations. This type of long-tail PSF, although not particularly discussed in our study, can be noted
in existing literature [44, 17, 19], and benefits for various applications. Additionally, in real-world scenarios, camera-
captured images are often applied in diverse downstream tasks. This observation inspires us to question whether there is
an optimal PSF for computational imaging and machine vision. In the Supplemental Material, we assess the performance
of our TaskLens in applications like object detection and instance segmentation. Yet, a more comprehensive evaluation
of this system is an area for future exploration.

7 Conclusion

In this paper, we introduce a task-driven approach that relies solely on a well-trained network to supervise lens design
from scratch. To the best of our knowledge, this is the first attempt to design lenses without using classical lens design
methods and knowledge. By applying this approach, we have designed three lenses specifically for image classification,
which outperform traditional imaging-oriented lenses, even with fewer elements. We believe that TaskLens has
significant potential not only in lens design methodologies but also in practical applications, especially where physical
size and cost constraints are critical factors.
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